
pco.edge 6.2 LE

long exposure **sCMOS** camera

true charge domain global shutter

interface	USB 3.1 Gen 1
sensor technology	sCMOS
color type	monochrome
resolution [pixel]	2496 x 2496
sensor diagonal [mm]	17.7
pixel size [μm]	5.0 × 5.0
max. frame rate @ full resolution [fps]	6
max. pixel rate [MPixel/s]	47
peak QE	63 % @ 500 nm
typ. read noise¹ [e⁻]	3.7
dark current @ sensor temperature [e ⁻ /pixel/s]	0.3 @ -10 °C
max. dynamic range	3200 : 1
shutter type	GS (Global Shutter)
sensor cooling ²	air & water
parasitic light sensitivity	1:10,000
dimensions H x W x L [mm]	85 x 80 x 109

¹ The readout noise values are given as median (med). All values are raw data without any filtering.

sCMOS follows in CCD's footsteps

The pco.edge 6.2 LE can be considered as the successor of deep-cooled CCD, long exposure cameras. Its design is optimized to realize long exposure times from miliseconds to minutes or even up to one hour. The image sensor is thermally stabilized at low temperatures of down to -20 °C in order to reduce the dark current to a minimum. Together with a high full well capacity and the wide range of exposure times, it is suitable for a broad field of low-light imaging applications like fluorescence, chemiluminescence, or astronomy.

 $^{^{2}}$ air = air forced with fan | water = external water connection